Copied to
clipboard

G = C24⋊D7order 224 = 25·7

1st semidirect product of C24 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C241D7, C23.25D14, C73C22≀C2, (C2×C14)⋊8D4, (C23×C14)⋊3C2, C14.63(C2×D4), C223(C7⋊D4), C23.D713C2, (C2×C14).61C23, (C2×Dic7)⋊3C22, (C22×D7)⋊2C22, C22.66(C22×D7), (C22×C14).42C22, (C2×C7⋊D4)⋊8C2, C2.26(C2×C7⋊D4), SmallGroup(224,148)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C24⋊D7
C1C7C14C2×C14C22×D7C2×C7⋊D4 — C24⋊D7
C7C2×C14 — C24⋊D7
C1C22C24

Generators and relations for C24⋊D7
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e7=f2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 446 in 130 conjugacy classes, 41 normal (8 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C2×D4, C24, Dic7, D14, C2×C14, C2×C14, C2×C14, C22≀C2, C2×Dic7, C7⋊D4, C22×D7, C22×C14, C22×C14, C23.D7, C2×C7⋊D4, C23×C14, C24⋊D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, C2×C7⋊D4, C24⋊D7

Smallest permutation representation of C24⋊D7
On 56 points
Generators in S56
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 40)(9 39)(10 38)(11 37)(12 36)(13 42)(14 41)(15 47)(16 46)(17 45)(18 44)(19 43)(20 49)(21 48)(22 54)(23 53)(24 52)(25 51)(26 50)(27 56)(28 55)

G:=sub<Sym(56)| (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,40)(9,39)(10,38)(11,37)(12,36)(13,42)(14,41)(15,47)(16,46)(17,45)(18,44)(19,43)(20,49)(21,48)(22,54)(23,53)(24,52)(25,51)(26,50)(27,56)(28,55)>;

G:=Group( (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,40)(9,39)(10,38)(11,37)(12,36)(13,42)(14,41)(15,47)(16,46)(17,45)(18,44)(19,43)(20,49)(21,48)(22,54)(23,53)(24,52)(25,51)(26,50)(27,56)(28,55) );

G=PermutationGroup([[(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,40),(9,39),(10,38),(11,37),(12,36),(13,42),(14,41),(15,47),(16,46),(17,45),(18,44),(19,43),(20,49),(21,48),(22,54),(23,53),(24,52),(25,51),(26,50),(27,56),(28,55)]])

C24⋊D7 is a maximal subgroup of
C24⋊D14  C24.27D14  C24.30D14  C24.31D14  C24.56D14  D7×C22≀C2  C242D14  C24.34D14  C24.35D14  C244D14  C24.36D14  C24.72D14  D4×C7⋊D4  C247D14  C24.41D14  C24.42D14
C24⋊D7 is a maximal quotient of
C24.62D14  C23.28D28  (C2×C14)⋊8D8  (C7×D4).31D4  C24.20D14  C24.21D14  (C7×Q8)⋊13D4  (C2×C14)⋊8Q16  C14.C22≀C2  (C22×Q8)⋊D7  (C7×D4)⋊14D4  (C7×D4).32D4  2+ 1+4⋊D7  2+ 1+4.D7  2+ 1+4.2D7  2+ 1+42D7  2- 1+4⋊D7  2- 1+4.D7  C25.D7

62 conjugacy classes

class 1 2A2B2C2D···2I2J4A4B4C7A7B7C14A···14AS
order12222···2244477714···14
size11112···2282828282222···2

62 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D7D14C7⋊D4
kernelC24⋊D7C23.D7C2×C7⋊D4C23×C14C2×C14C24C23C22
# reps133163936

Matrix representation of C24⋊D7 in GL4(𝔽29) generated by

28000
0100
0010
00028
,
28000
02800
00280
0001
,
1000
0100
00280
00028
,
28000
02800
00280
00028
,
23000
02400
00200
00016
,
02400
23000
00016
00200
G:=sub<GL(4,GF(29))| [28,0,0,0,0,1,0,0,0,0,1,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[23,0,0,0,0,24,0,0,0,0,20,0,0,0,0,16],[0,23,0,0,24,0,0,0,0,0,0,20,0,0,16,0] >;

C24⋊D7 in GAP, Magma, Sage, TeX

C_2^4\rtimes D_7
% in TeX

G:=Group("C2^4:D7");
// GroupNames label

G:=SmallGroup(224,148);
// by ID

G=gap.SmallGroup(224,148);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,218,6917]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^7=f^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽